split into hardware dependent / independent

This commit is contained in:
2024-08-30 23:16:31 -04:00
parent 4d8a2970c4
commit aa1d4a9371
14 changed files with 142 additions and 69 deletions

View File

@ -0,0 +1,11 @@
[package]
name = "gem-remotes-lib"
version = "0.1.0"
edition = "2021"
[dependencies]
anyhow = "1.0.86"
async-channel = "2.3.1"
log = "0.4.22"
strum = "0.26.3"
strum_macros = "0.26.4"

View File

@ -0,0 +1,62 @@
/// An enum of all commands passed into and out of the microcontroller
use strum_macros::EnumCount as EnumCountMacro;
use std::mem::discriminant;
use std::sync::Arc;
#[derive(Clone, EnumCountMacro, Debug)]
pub enum Commands {
// Use Arc for any data larger than 4 bytes, to keep message passing queue size down.
// Inputs sent from the PIC microcontroller
// TODO: move these to buttons driver, for eventual move to ESP only?
// PIC button commands are considered "remote" due to the delay in sending notification
PicRecvUp {data: Button},
PicRecvDown {data: Button},
PicRecvStop {data: Button},
PicRecvLimitUp {data: Button}, // 0 for not hit, 1 for hit
PicRecvLimitDown {data: Button}, // 0 for not hit, 1 for hit
PicRecvAutoMode {data: Button}, // 0 for disallowed, 1 for allowed
// TODO: real hardware buttons - consider re-sending occasionally when pressed, so that transitions like holding up -> stopping -> holding down -> stopped -> (should go down but gets no new notice) work.
// Inputs from bluetooth
BluetoothUp {data: Button}, //TODO change these to real button states and change them on input.
BluetoothDown {data: Button},
BluetoothStop {data: Button}, // There is no state where releasing the stop button induces a change.
BluetoothName {data: Arc<String>},
//TODO: Allow auto mode to be set via bluetooth as well
// Internal messages
StopTimerExpired, // Sent when the 2 second stop sequence is complete
StopTimerRestart,
StopTimerClear,
ButtonTimerExpired, // TODO: these won't be necessary for hardware buttons; rename to PIC timer?
ButtonTimerRestart,
ButtonTimerClear,
PairTimerExpired,
AllowPairing, // Also serves as the timer restart command
PairTimerClear,
NotifyMotorUp {data: Button},
NotifyMotorDown {data: Button},
NotifyMotorStop {data: Button},
EraseBleBonds,
}
#[derive(Copy, Clone, Debug)]
pub enum Button {
Released = 0,
Pressed =1
}
pub type CmdType = std::mem::Discriminant<Commands>;
/// Consider commands equal if they have the same command type, but different values
impl PartialEq for Commands {
fn eq(&self, other: &Self) -> bool {
discriminant(self) == discriminant(other)
}
}

View File

@ -0,0 +1,78 @@
/// Acts as a queue multiplexer. Accepts messages from entities that have taken an endpoint, and
/// broadcasts them to any entity that has subscribed for them.
use std::mem::discriminant;
use std::collections::HashMap;
use std::vec::Vec;
use async_channel::{unbounded, Receiver, Sender};
use strum::EnumCount;
use crate::commands::{Commands, CmdType};
use log::*; //{trace, debug, info, warn, error}
pub type DispatchSendQ = Sender<Commands>;
pub type DispatchRecvQ = Receiver<Commands>;
//TODO: Making this generic over a <C> for commands would make it a useful small event handler.
pub struct Dispatch {
callbacks: HashMap<CmdType, Vec<DispatchSendQ> >,
recv: DispatchRecvQ, // Channel to listen to incomming commands
endpoint: DispatchSendQ, // Endpoint to clone to hand to other modules, so that they can send commands
}
impl Dispatch {
pub fn new() -> Dispatch {
let (s, r) = unbounded(); //This should always be unbounded, because some callbacks have to send_blocking to it, and if the thread blocks, other tasks can't empty the queue!
let mut hmap = HashMap::new();
hmap.reserve(Commands::COUNT);
Dispatch { callbacks: hmap, recv: r, endpoint: s}
}
/// Get a channel receiver that will get callbacks for all commands in the listen_for vec.
pub fn get_callback_channel(&mut self, listen_for: &Vec<Commands>) -> DispatchRecvQ {
let (send, rec) = unbounded(); // TODO: these could be bounded instead, as these calls are all non-blocking.
for cmd in listen_for {
let callback_list = self.callbacks.get_mut(&discriminant(&cmd));
match callback_list {
Some(callback) => {
callback.push(send.clone());
trace!("Adding {:?} to callbacks", cmd);
}
None => {
let mut callback = Vec::new();
callback.push(send.clone());
self.callbacks.insert(discriminant(&cmd), callback);
trace!("Created {:?} callback", cmd);
}
}
}
rec
}
/// Get a channel sender that will send commands to this dispatcher
pub fn get_cmd_channel(&self) -> DispatchSendQ {
self.endpoint.clone()
}
/// Wait on incomming commands and dispatch them
pub async fn cmd_loop(&self) -> anyhow::Result<()> {
loop {
debug!("Dispatch waiting on commands");
let cmd = self.recv.recv().await.expect("Incoming event queue failed unexpectedly");
debug!("Dispatch got command {:?}", cmd);
let cmd_type = discriminant(&cmd);
let found_listeners = self.callbacks.get(&cmd_type);
match found_listeners {
Some(listeners) => {
for listener in listeners {
trace!("Sending cmd {:?}", cmd);
listener.send(cmd.clone()).await.expect("Outgoing event queue failed unexpectedly");
}
}
None => {debug!("Dispatch found no listeners for a command")}
}
}
}
}

View File

@ -0,0 +1,45 @@
/// Business logic (independent of hardware) for Gem Remotes ESP32 controller
// Modules in this crate
pub mod commands;
pub mod dispatch;
pub mod motor_controller;
// Re-published items
pub use commands::{
Button,
Commands
};
pub use motor_controller::{
AutoMode,
Controller,
LimitState,
MotorCommands,
MotorRecvQ,
MotorSendQ,
};
pub use dispatch::{
Dispatch,
DispatchSendQ,
DispatchRecvQ,
};
// Test Code for whole module
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@ -0,0 +1,445 @@
/// State machine of the motor's current state, that takes as inputs
/// command messages.
use log::*; //{trace, debug, info, warn, error}
use anyhow::Result;
use async_channel::{Receiver, Sender};
use crate::commands::{Commands, Button};
use crate::dispatch::{Dispatch, DispatchRecvQ, DispatchSendQ};
// The main internal state of the controller, representing the current control method of the motors.
#[derive(Clone, Copy, Debug, PartialEq)]
enum ControllerStates {
Stopped,
Stopping,
GoingUp,
AutoUp,
GoingDown,
AutoDown,
}
#[derive(Clone, Copy, Debug)]
pub enum MotorCommands {
StartUp,
StartDown,
Stop
}
pub type MotorSendQ = Sender<MotorCommands>;
pub type MotorRecvQ = Receiver<MotorCommands>;
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AutoMode {
Disallowed = 0,
Allowed = 1,
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum LimitState {
NoLimitsHit,
UpperHit,
LowerHit,
BothHit,
}
pub struct Controller {
state: ControllerStates,
recv: DispatchRecvQ,
send: DispatchSendQ,
motor_q: MotorSendQ,
auto_mode: AutoMode,
limit_state: LimitState,
}
impl Controller {
pub fn new(recv: DispatchRecvQ, send: DispatchSendQ, motor_q: MotorSendQ) -> Self {
Controller {
state: ControllerStates::Stopping,
recv: recv,
send: send,
motor_q: motor_q,
auto_mode: AutoMode::Disallowed, // Use safe default
limit_state: LimitState::BothHit, // Use safe default
}
}
/// Tell the message dispatch which messages we are interested in receiving, and get
/// a callback channel that receives those messages.
pub fn prepare_controller(dp: &mut Dispatch) -> DispatchRecvQ {
let cmds = vec![
Commands::PicRecvUp{data: Button::Released},
Commands::PicRecvDown{data: Button::Released},
Commands::PicRecvStop{data: Button::Released},
Commands::BluetoothUp{data: Button::Released},
Commands::BluetoothDown{data: Button::Released},
Commands::BluetoothStop{data: Button::Released},
Commands::PicRecvLimitUp{data: Button::Released},
Commands::PicRecvLimitDown{data: Button::Released},
Commands::PicRecvAutoMode{data: Button::Released},
Commands::StopTimerExpired,
Commands::ButtonTimerExpired,
];
dp.get_callback_channel(&cmds)
}
async fn enter_state(&mut self, new_s: &ControllerStates) -> Result<()> {
match new_s {
ControllerStates::Stopped => {
// Other notify commands are sent directly from the motor controller
self.send.send(Commands::NotifyMotorStop{data: Button::Released}).await?;
}
ControllerStates::Stopping => {
self.send.send(Commands::StopTimerRestart).await?;
self.motor_q.send(MotorCommands::Stop).await?;
self.send.send(Commands::NotifyMotorStop{data: Button::Pressed}).await?;
}
ControllerStates::GoingUp => {
self.send.send(Commands::ButtonTimerRestart).await?;
self.motor_q.send(MotorCommands::StartUp).await?;
self.send.send(Commands::NotifyMotorUp{data: Button::Pressed}).await?;
}
ControllerStates::AutoUp => {
self.motor_q.send(MotorCommands::StartUp).await?;
self.send.send(Commands::NotifyMotorUp{data: Button::Pressed}).await?;
}
ControllerStates::GoingDown => {
self.send.send(Commands::ButtonTimerRestart).await?;
self.motor_q.send(MotorCommands::StartDown).await?;
self.send.send(Commands::NotifyMotorUp{data: Button::Pressed}).await?;
}
ControllerStates::AutoDown => {
self.motor_q.send(MotorCommands::StartDown).await?;
self.send.send(Commands::NotifyMotorUp{data: Button::Pressed}).await?;
}
}
Ok(())
}
async fn exit_state(&mut self, old_s: &ControllerStates) -> Result <()> {
match old_s {
ControllerStates::Stopped => {}
ControllerStates::Stopping => {
self.send.send(Commands::StopTimerClear).await?;
}
ControllerStates::GoingUp => {
self.send.send(Commands::ButtonTimerClear).await?;
self.send.send(Commands::NotifyMotorUp{data: Button::Released}).await?;
}
ControllerStates::AutoUp => {
self.send.send(Commands::NotifyMotorUp{data: Button::Released}).await?;
}
ControllerStates::GoingDown => {
self.send.send(Commands::ButtonTimerClear).await?;
self.send.send(Commands::NotifyMotorDown{data: Button::Released}).await?;
}
ControllerStates::AutoDown => {
self.send.send(Commands::NotifyMotorDown{data: Button::Released}).await?;
}
}
Ok(())
}
fn change_state_if_released(&self, data: &Button, new_state: ControllerStates) -> ControllerStates {
match data {
Button::Released => {new_state}
Button::Pressed => {self.state.clone()}
}
}
fn change_state_if_pressed(&self, data: &Button, new_state: ControllerStates) -> ControllerStates {
match data {
Button::Released => {self.state.clone()}
Button::Pressed => {new_state}
}
}
/// Determines the state the controller should be in based on the command received.
async fn handle_cmd(&mut self, cmd: &Commands) -> ControllerStates {
match cmd {
Commands::PicRecvUp { data } | Commands::BluetoothUp { data }=> {
match self.state {
ControllerStates::Stopped => {return self.change_state_if_pressed(data, self.remote_up_or_auto_up())}
ControllerStates::Stopping => {}
ControllerStates::GoingUp => {
self.send.send(Commands::ButtonTimerRestart).await.expect("Failed to necessary timer");
return self.change_state_if_released(data, ControllerStates::Stopping)
}
ControllerStates::AutoUp => {} // Don't stop auto on button release
ControllerStates::GoingDown |
ControllerStates::AutoDown => {
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
}
}
Commands::PicRecvDown { data } | Commands::BluetoothDown { data } => {
match self.state {
ControllerStates::Stopped => {return self.change_state_if_pressed(data, self.remote_down_or_auto_down())}
ControllerStates::Stopping => {}
ControllerStates::GoingUp |
ControllerStates::AutoUp => {
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
ControllerStates::GoingDown => {
self.send.send(Commands::ButtonTimerRestart).await.expect("Failed to necessary timer");
return self.change_state_if_released(data, ControllerStates::Stopping)
}
ControllerStates::AutoDown => {}
}
}
Commands::PicRecvStop { data } | Commands::BluetoothStop { data } => {
match self.state {
ControllerStates::Stopped => {}
ControllerStates::Stopping => {}
ControllerStates::GoingUp |
ControllerStates::AutoUp |
ControllerStates::GoingDown |
ControllerStates::AutoDown => {
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
}
}
Commands::PicRecvLimitUp { data } => {
self.adjust_limit(LimitState::UpperHit, data);
match self.state {
ControllerStates::Stopped => {} // Ignore; this could just be our initial notification on startup.
ControllerStates::Stopping => {}
ControllerStates::GoingUp |
ControllerStates::AutoUp=> {
released_warning(data, "Limit switches may be installed incorrectly!");
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
ControllerStates::GoingDown |
ControllerStates::AutoDown=> {
pressed_warning(data, "Limit switches may be installed incorrectly!");
// Stop out of an abundance of caution. We should not get a limit press, even if it's the wrong one.
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
}
}
Commands::PicRecvLimitDown { data } => {
self.adjust_limit(LimitState::LowerHit, data);
match self.state {
ControllerStates::Stopped => {} // Ignore; this could just be our initial notification on startup.
ControllerStates::Stopping => {}
ControllerStates::GoingUp |
ControllerStates::AutoUp => {
pressed_warning(data, "Limit switches may be installed incorrectly!");
// Stop out of an abundance of caution. We should not get a limit press, even if it's the wrong one.
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
ControllerStates::GoingDown |
ControllerStates::AutoDown => {
released_warning(data, "Limit switches may be installed incorrectly!");
return self.change_state_if_pressed(data, ControllerStates::Stopping)
}
}
}
Commands::PicRecvAutoMode { data } => {self.set_auto(data);}
Commands::StopTimerExpired => {
match self.state {
ControllerStates::Stopped => {}
ControllerStates::Stopping => {return ControllerStates::Stopped}
ControllerStates::GoingUp |
ControllerStates::AutoUp |
ControllerStates::GoingDown |
ControllerStates::AutoDown => {
warn!("Stop timer returned in an inappropriate state! {:?}", self.state)
}
}
}
Commands::ButtonTimerExpired => {
match self.state {
ControllerStates::Stopped => {}
ControllerStates::Stopping => {}
ControllerStates::GoingUp => {return ControllerStates::Stopping}
ControllerStates::AutoUp => {}
ControllerStates::GoingDown => {return ControllerStates::Stopping}
ControllerStates::AutoDown => {}
}
}
// Commands we should ignore (not using _ because we want to ensure all commands are accounted for!)
Commands::StopTimerRestart |
Commands::StopTimerClear |
Commands::ButtonTimerRestart |
Commands::ButtonTimerClear |
Commands::PairTimerClear |
Commands::PairTimerExpired |
Commands::AllowPairing |
Commands::EraseBleBonds => {
warn!("Unexpected command received by motor controller") // TODO: internal "us" error.
}
Commands::NotifyMotorDown { data } |
Commands::NotifyMotorStop { data } |
Commands::NotifyMotorUp { data } => {
warn!("Unexpected command received by motor controller {:?}", data) // TODO: internal "us" error.
}
Commands::BluetoothName { data } => {
warn!("Unexpected command received by motor controller {:?}", data) // TODO: internal "us" error.
}
}
self.state.clone() // Don't transition by default
}
async fn transition_state(&mut self, old_s: &ControllerStates, new_s: &ControllerStates) -> Result<()> {
if old_s != new_s {
self.exit_state(&old_s).await?;
self.enter_state(&new_s).await?;
}
self.state = new_s.clone();
Ok(())
}
pub async fn run(&mut self) -> Result<()> {
// On entry, assume initial stopping state
debug!("Setting motor controller initial state to stopping");
self.state = ControllerStates::Stopping;
self.enter_state(&ControllerStates::Stopping).await?;
loop {
let cmd = self.recv.recv().await.expect("Motor controller command queue unexpectedly failed");
trace!("Got command {:?}",cmd);
let new_s = self.handle_cmd(&cmd).await;
trace!("State current {:?} new {:?}", self.state, new_s);
self.transition_state(&self.state.clone(), &new_s).await.expect("Unexpected state change failure in motor controller");
}
}
fn remote_up_or_auto_up(&self) -> ControllerStates {
self.up_or_auto_up(ControllerStates::GoingUp)
}
fn up_or_auto_up(&self, up: ControllerStates) -> ControllerStates {
// Assume that checking the limit against the direction has already been performed.
match self.auto_mode {
AutoMode::Disallowed => {
up // TODO: this allows manual buttons to override limits as long as "auto" mode is off.
}
AutoMode::Allowed => {
match self.limit_state {
LimitState::NoLimitsHit | LimitState::LowerHit=> {
ControllerStates::AutoUp
}
LimitState::UpperHit => {
ControllerStates::Stopping // Failsafe as we are already at our upper limit. TODO: maybe should be manual up?
}
LimitState::BothHit => {
up
}
}
}
}
}
fn remote_down_or_auto_down(&self) -> ControllerStates {
self.down_or_auto_down(ControllerStates::GoingDown)
}
fn down_or_auto_down(&self, down: ControllerStates) -> ControllerStates {
// Assume that checking the limit against the direction has already been performed.
match self.auto_mode {
AutoMode::Disallowed => {
down // TODO: this allows manual buttons to override limits as long as "auto" mode is off.
}
AutoMode::Allowed => {
match self.limit_state {
LimitState::NoLimitsHit | LimitState::LowerHit=> {
ControllerStates::AutoDown
}
LimitState::UpperHit => {
ControllerStates::Stopping // Failsafe as we are already at our upper limit. TODO: Maybe should be manual down?
}
LimitState::BothHit => {
down
}
}
}
}
}
fn set_auto(&mut self, data: &Button) {
match data {
Button::Released => {
self.auto_mode = AutoMode::Disallowed;
}
Button::Pressed => {
if self.limit_state == LimitState::BothHit {
warn!("Limit switches not detected. Aborting auto mode.");
} else {
self.auto_mode = AutoMode::Allowed;
}
}
}
}
fn adjust_limit(&mut self, limit: LimitState, pressed: &Button) {
match pressed {
Button::Released => {
match limit {
LimitState::NoLimitsHit => {
unreachable!("There is no way to press NoLimits")
}
LimitState::LowerHit => {
match self.limit_state {
LimitState::NoLimitsHit |
LimitState::UpperHit => {warn!("removed limit we never hit {:?}", LimitState::LowerHit);} //TODO intenral error
LimitState::LowerHit => {self.limit_state = LimitState::NoLimitsHit;}
LimitState::BothHit => {self.limit_state = LimitState::UpperHit;}
}
}
LimitState::UpperHit => {
match self.limit_state {
LimitState::NoLimitsHit |
LimitState::LowerHit => {warn!("removed limit we never hit {:?}", LimitState::UpperHit);} //TODO intenral error
LimitState::UpperHit => {self.limit_state = LimitState::NoLimitsHit;}
LimitState::BothHit => {self.limit_state = LimitState::LowerHit;}
}
}
LimitState::BothHit => {
unreachable!("There is no way to press BothHit")
}
}
}
Button::Pressed => {
match limit {
LimitState::NoLimitsHit => {
unreachable!("There is no way to press BothHit")
}
LimitState::LowerHit => {
match self.limit_state {
LimitState::NoLimitsHit => {self.limit_state = LimitState::LowerHit;}
LimitState::LowerHit => {}
LimitState::UpperHit => {self.limit_state = LimitState::BothHit;}
LimitState::BothHit => {}
}
}
LimitState::UpperHit => {
match self.limit_state {
LimitState::NoLimitsHit => {self.limit_state = LimitState::UpperHit;}
LimitState::LowerHit => {self.limit_state = LimitState::BothHit;}
LimitState::UpperHit => {}
LimitState::BothHit => {}
}
}
LimitState::BothHit => {
unreachable!("There is no way to press BothHit")
}
}
}
}
}
}
fn pressed_warning(data: &Button, warn: &str) {
match data {
Button::Pressed => {warn!("{}", warn);} // TODO: user warning, not intenral
Button::Released => {}
}
}
fn released_warning(data: &Button, warn: &str) {
match data {
Button::Released => {warn!("{}", warn);} // TODO: user warning, not intenral
Button::Pressed => {}
}
}